参考文献 References
[1] LI H, SONG W, LI Z, ZHANG M. Preclinical and clinical studies of CAR-NK-cell therapies for malignancies [J]. Front Immunol, 2022, 13: 992232.
[2] CICHOCKI F, GRZYWACZ B, MILLER J S. Human NK Cell Development: One Road or Many? [J]. Front Immunol, 2019, 10: 2078.
[3] COOPER M A, FEHNIGER T A, CALIGIURI M A. The biology of human natural killer-cell subsets [J]. Trends Immunol, 2001, 22(11): 633-40.
[4] RAMíREZ-LABRADA A, PESINI C, SANTIAGO L, et al. All About (NK Cell-Mediated) Death in Two Acts and an Unexpected Encore: Initiation, Execution and Activation of Adaptive Immunity [J]. Front Immunol, 2022, 13: 896228.
[5] KONJEVIĆ G, VULETIĆ A, MIRJAČIĆ MARTINOVIĆ K. Natural killer cell receptors: alterations and therapeutic targeting in malignancies [J]. Immunol Res, 2016, 64(1): 25-35.
[6] MAROFI F, SALEH M M, RAHMAN H S, et al. CAR-engineered NK cells; a promising therapeutic option for treatment of hematological malignancies [J]. Stem Cell Res Ther, 2021, 12(1): 374.
[7] BRYCESON Y T, MARCH M E, LJUNGGREN H G, LONG E O. Activation, coactivation, and costimulation of resting human natural killer cells [J]. Immunol Rev, 2006, 214: 73-91.
[8] BRYCESON Y T, MARCH M E, LJUNGGREN H G, LONG E O. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion [J]. Blood, 2006, 107(1): 159-66.
[9] BERRIEN-ELLIOTT M M, JACOBS M T, FEHNIGER T A. Allogeneic natural killer cell therapy [J]. Blood, 2023, 141(8): 856-68.
[10] GUILLEREY C, HUNTINGTON N D, SMYTH M J. Targeting natural killer cells in cancer immunotherapy [J]. Nat Immunol, 2016, 17(9): 1025-36.
[11] KäRRE K. Natural killer cell recognition of missing self [J]. Nat Immunol, 2008, 9(5): 477-80.
[12] LI P, MORRIS D L, WILLCOX B E, et al. Complex structure of the activating immunoreceptor NKG2D and its MHC class I-like ligand MICA [J]. Nat Immunol, 2001, 2(5): 443-51.
[13] LI Y, HERMANSON D L, MORIARITY B S, KAUFMAN D S. Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity [J]. Cell Stem Cell, 2018, 23(2): 181-92.e5.
[14] WANG W, ERBE A K, HANK J A, et al. NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy [J]. Front Immunol, 2015, 6: 368.
[15] CAPUANO C, PIGHI C, BATTELLA S, et al. Harnessing CD16-Mediated NK Cell Functions to Enhance Therapeutic Efficacy of Tumor-Targeting mAbs [J]. Cancers (Basel), 2021, 13(10).
[16] VOSKOBOINIK I, WHISSTOCK J C, TRAPANI J A. Perforin and granzymes: function, dysfunction and human pathology [J]. Nat Rev Immunol, 2015, 15(6): 388-400.
[17] MORVAN M G, LANIER L L. NK cells and cancer: you can teach innate cells new tricks [J]. Nat Rev Cancer, 2016, 16(1): 7-19.
[18] WALLIN R P, SCREPANTI V, MICHAëLSSON J, et al. Regulation of perforin-independent NK cell-mediated cytotoxicity [J]. Eur J Immunol, 2003, 33(10): 2727-35.
[19] VIVIER E, RAULET D H, MORETTA A, et al. Innate or adaptive immunity? The example of natural killer cells [J]. Science, 2011, 331(6013): 44-9.
[20] HABIF G, CRINIER A, ANDRé P, et al. Targeting natural killer cells in solid tumors [J]. Cell Mol Immunol, 2019, 16(5): 415-22.
[21] HAYAKAWA Y, TAKEDA K, YAGITA H, et al. IFN-gamma-mediated inhibition of tumor angiogenesis by natural killer T-cell ligand, alpha-galactosylceramide [J]. Blood, 2002, 100(5): 1728-33.
[22] FEDERICI C, SHAHAJ E, CECCHETTI S, et al. Natural-Killer-Derived Extracellular Vesicles: Immune Sensors and Interactors [J]. Front Immunol, 2020, 11: 262.
[23] GOLDENSON B H, HOR P, KAUFMAN D S. iPSC-Derived Natural Killer Cell Therapies - Expansion and Targeting [J]. Front Immunol, 2022, 13: 841107.
[24] MADDINENI S, SILBERSTEIN J L, SUNWOO J B. Emerging NK cell therapies for cancer and the promise of next generation engineering of iPSC-derived NK cells [J]. J Immunother Cancer, 2022, 10(5).
[25] MEHTA R S, SHPALL E J, REZVANI K. Cord Blood as a Source of Natural Killer Cells [J]. Front Med (Lausanne), 2015, 2: 93.
[26] BOYD-GIBBINS N, KARAGIANNIS P, HWANG D W, KIM S I. iPSCs in NK Cell Manufacturing and NKEV Development [J]. Front Immunol, 2022, 13: 890894.
[27] KLINGEMANN H, BOISSEL L, TONEGUZZO F. Natural Killer Cells for Immunotherapy - Advantages of the NK-92 Cell Line over Blood NK Cells [J]. Front Immunol, 2016, 7: 91.
[28] LASKOWSKI T J, BIEDERSTäDT A, REZVANI K. Natural killer cells in antitumour adoptive cell immunotherapy [J]. Nat Rev Cancer, 2022, 22(10): 557-75.
[29] ZHU H, KAUFMAN D S. An Improved Method to Produce Clinical-Scale Natural Killer Cells from Human Pluripotent Stem Cells [J]. Methods Mol Biol, 2019, 2048: 107-19.
[30] LUPO K B, MATOSEVIC S. Natural Killer Cells as Allogeneic Effectors in Adoptive Cancer Immunotherapy [J]. Cancers (Basel), 2019, 11(6).
[31] MILLER J S, SOIGNIER Y, PANOSKALTSIS-MORTARI A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer [J]. Blood, 2005, 105(8): 3051-7.
[32] XIE G, DONG H, LIANG Y, et al. CAR-NK cells: A promising cellular immunotherapy for cancer [J]. EBioMedicine, 2020, 59: 102975.
[33] BARI R, GRANZIN M, TSANG K S, et al. A Distinct Subset of Highly Proliferative and Lentiviral Vector (LV)-Transducible NK Cells Define a Readily Engineered Subset for Adoptive Cellular Therapy [J]. Front Immunol, 2019, 10: 2001.
[34] SCHMIDT P, RAFTERY M J, PECHER G. Engineering NK Cells for CAR Therapy-Recent Advances in Gene Transfer Methodology [J]. Front Immunol, 2020, 11: 611163.
[35] SHANKAR K, CAPITINI C M, SAHA K. Genome engineering of induced pluripotent stem cells to manufacture natural killer cell therapies [J]. Stem Cell Res Ther, 2020, 11(1): 234.
[36] GONG Y, KLEIN WOLTERINK R G J, WANG J, et al. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy [J]. J Hematol Oncol, 2021, 14(1): 73.
[37] PFEFFERLE A, HUNTINGTON N D. You Have Got a Fast CAR: Chimeric Antigen Receptor NK Cells in Cancer Therapy [J]. Cancers (Basel), 2020, 12(3).
[38] STOIBER S, CADILHA B L, BENMEBAREK M R, et al. Limitations in the Design of Chimeric Antigen Receptors for Cancer Therapy [J]. Cells, 2019, 8(5).
[39] WANG W, JIANG J, WU C. CAR-NK for tumor immunotherapy: Clinical transformation and future prospects [J]. Cancer Lett, 2020, 472: 175-80.
[40] ROEX G, CAMPILLO-DAVO D, FLUMENS D, et al. Two for one: targeting BCMA and CD19 in B-cell malignancies with off-the-shelf dual-CAR NK-92 cells [J]. J Transl Med, 2022, 20(1): 124.
[41] OELSNER S, WALDMANN A, BILLMEIER A, et al. Genetically engineered CAR NK cells display selective cytotoxicity against FLT3-positive B-ALL and inhibit in vivo leukemia growth [J]. Int J Cancer, 2019, 145(7): 1935-45.
[42] LEIVAS A, VALERI A, CóRDOBA L, et al. NKG2D-CAR-transduced natural killer cells efficiently target multiple myeloma [J]. Blood Cancer J, 2021, 11(8): 146.
[43] LIU R, LUO Q, LUO W, et al. A Soluble NK-CAR Mediates the Specific Cytotoxicity of NK Cells toward the Target CD20(+) Lymphoma Cells [J]. Aging Dis, 2022, 13(5): 1576-88.
[44] LIU T, DAI X, XU Y, et al. CD22 is a potential target of CAR-NK cell therapy for esophageal squamous cell carcinoma [J]. J Transl Med, 2023, 21(1): 710.
[45] LIU E, MARIN D, BANERJEE P, et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors [J]. N Engl J Med, 2020, 382(6): 545-53.
[46] YAN Z, CAO J, CHENG H, et al. A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase 2 trial [J]. Lancet Haematol, 2019, 6(10): e521-e9.
[47] TAKETANI T, TAKI T, SUGITA K, et al. FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy [J]. Blood, 2004, 103(3): 1085-8.
[48] XU Y, LIU Q, ZHONG M, et al. 2B4 costimulatory domain enhancing cytotoxic ability of anti-CD5 chimeric antigen receptor engineered natural killer cells against T cell malignancies [J]. J Hematol Oncol, 2019, 12(1): 49.
[49] YOU F, WANG Y, JIANG L, et al. A novel CD7 chimeric antigen receptor-modified NK-92MI cell line targeting T-cell acute lymphoblastic leukemia [J]. Am J Cancer Res, 2019, 9(1): 64-78.
[50] REINHOLD U, ABKEN H, KUKEL S, et al. CD7- T cells represent a subset of normal human blood lymphocytes [J]. J Immunol, 1993, 150(5): 2081-9.
[51] CUMMINS K D, GILL S. Chimeric antigen receptor T-cell therapy for acute myeloid leukemia: how close to reality? [J]. Haematologica, 2019, 104(7): 1302-8.
[52] ALBINGER N, PFEIFER R, NITSCHE M, et al. Primary CD33-targeting CAR-NK cells for the treatment of acute myeloid leukemia [J]. Blood Cancer J, 2022, 12(4): 61.
[53] CARUSO S, DE ANGELIS B, DEL BUFALO F, et al. Safe and effective off-the-shelf immunotherapy based on CAR.CD123-NK cells for the treatment of acute myeloid leukaemia [J]. J Hematol Oncol, 2022, 15(1): 163.
[54] GURNEY M, STIKVOORT A, NOLAN E, et al. CD38 knockout natural killer cells expressing an affinity optimized CD38 chimeric antigen receptor successfully target acute myeloid leukemia with reduced effector cell fratricide [J]. Haematologica, 2022, 107(2): 437-45.
[55] MAALEJ K M, MERHI M, INCHAKALODY V P, et al. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances [J]. Mol Cancer, 2023, 22(1): 20.
[56] NEWMAN J P, WANG G Y, ARIMA K, et al. Interleukin-13 receptor alpha 2 cooperates with EGFRvIII signaling to promote glioblastoma multiforme [J]. Nat Commun, 2017, 8(1): 1913.
[57] MA R, LU T, LI Z, et al. An Oncolytic Virus Expressing IL15/IL15Rα Combined with Off-the-Shelf EGFR-CAR NK Cells Targets Glioblastoma [J]. Cancer Res, 2021, 81(13): 3635-48.
[58] DESELM C J, TANO Z E, VARGHESE A M, ADUSUMILLI P S. CAR T-cell therapy for pancreatic cancer [J]. J Surg Oncol, 2017, 116(1): 63-74.
[59] TENG K Y, MANSOUR A G, ZHU Z, et al. Off-the-Shelf Prostate Stem Cell Antigen-Directed Chimeric Antigen Receptor Natural Killer Cell Therapy to Treat Pancreatic Cancer [J]. Gastroenterology, 2022, 162(4): 1319-33.
[60] NISHIDA T, KATAOKA H. Glypican 3-Targeted Therapy in Hepatocellular Carcinoma [J]. Cancers (Basel), 2019, 11(9).
[61] YU M, LUO H, FAN M, et al. Development of GPC3-Specific Chimeric Antigen Receptor-Engineered Natural Killer Cells for the Treatment of Hepatocellular Carcinoma [J]. Mol Ther, 2018, 26(2): 366-78.
[62] TSENG H C, XIONG W, BADETI S, et al. Efficacy of anti-CD147 chimeric antigen receptors targeting hepatocellular carcinoma [J]. Nat Commun, 2020, 11(1): 4810.
[63] LV J, ZHAO R, WU D, et al. Mesothelin is a target of chimeric antigen receptor T cells for treating gastric cancer [J]. J Hematol Oncol, 2019, 12(1): 18.
[64] CAO B, LIU M, HUANG J, et al. Development of mesothelin-specific CAR NK-92 cells for the treatment of gastric cancer [J]. Int J Biol Sci, 2021, 17(14): 3850-61.
[65] ROMEE R, LEONG J W, FEHNIGER T A. Utilizing cytokines to function-enable human NK cells for the immunotherapy of cancer [J]. Scientifica (Cairo), 2014, 2014: 205796.
[66] ROMEE R, ROSARIO M, BERRIEN-ELLIOTT M M, et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia [J]. Sci Transl Med, 2016, 8(357): 357ra123.
[67] GANG M, MARIN N D, WONG P, et al. CAR-modified memory-like NK cells exhibit potent responses to NK-resistant lymphomas [J]. Blood, 2020, 136(20): 2308-18.
[68] MARIN N D, KRASNICK B A, BECKER-HAPAK M, et al. Memory-like Differentiation Enhances NK Cell Responses to Melanoma [J]. Clin Cancer Res, 2021, 27(17): 4859-69.
[69] PFEFFERLE A, JACOBS B, HAROUN-IZQUIERDO A, et al. Deciphering Natural Killer Cell Homeostasis [J]. Front Immunol, 2020, 11: 812.
[70] VALERI A, GARCíA-ORTIZ A, CASTELLANO E, et al. Overcoming tumor resistance mechanisms in CAR-NK cell therapy [J]. Front Immunol, 2022, 13: 953849.
[71] IMAMURA M, SHOOK D, KAMIYA T, et al. Autonomous growth and increased cytotoxicity of natural killer cells expressing membrane-bound interleukin-15 [J]. Blood, 2014, 124(7): 1081-8.
[72] LIU E, TONG Y, DOTTI G, et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity [J]. Leukemia, 2018, 32(2): 520-31.
[73] WOAN K V, KIM H, BJORDAHL R, et al. Harnessing features of adaptive NK cells to generate iPSC-derived NK cells for enhanced immunotherapy [J]. Cell Stem Cell, 2021, 28(12): 2062-75.e5.
[74] DELCONTE R B, KOLESNIK T B, DAGLEY L F, et al. CIS is a potent checkpoint in NK cell-mediated tumor immunity [J]. Nat Immunol, 2016, 17(7): 816-24.
[75] ZHU H, BLUM R H, BERNAREGGI D, et al. Metabolic Reprograming via Deletion of CISH in Human iPSC-Derived NK Cells Promotes In Vivo Persistence and Enhances Anti-tumor Activity [J]. Cell Stem Cell, 2020, 27(2): 224-37.e6.
[76] ZHANG Y, ZHENG J. Functions of Immune Checkpoint Molecules Beyond Immune Evasion [J]. Adv Exp Med Biol, 2020, 1248: 201-26.
[77] KHAN M, AROOJ S, WANG H. NK Cell-Based Immune Checkpoint Inhibition [J]. Front Immunol, 2020, 11: 167.
[78] ANDRé P, DENIS C, SOULAS C, et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells [J]. Cell, 2018, 175(7): 1731-43.e13.
[79] LIN M, LUO H, LIANG S, et al. Pembrolizumab plus allogeneic NK cells in advanced non-small cell lung cancer patients [J]. J Clin Invest, 2020, 130(5): 2560-9.
[80] ZHU Y, PANICCIA A, SCHULICK A C, et al. Identification of CD112R as a novel checkpoint for human T cells [J]. J Exp Med, 2016, 213(2): 167-76.
[81] LI Y, ZHANG Y, CAO G, et al. Blockade of checkpoint receptor PVRIG unleashes anti-tumor immunity of NK cells in murine and human solid tumors [J]. J Hematol Oncol, 2021, 14(1): 100.
[82] LI B, CHAN H L, CHEN P. Immune Checkpoint Inhibitors: Basics and Challenges [J]. Curr Med Chem, 2019, 26(17): 3009-25.
[83] HODGINS J J, KHAN S T, PARK M M, et al. Killers 2.0: NK cell therapies at the forefront of cancer control [J]. J Clin Invest, 2019, 129(9): 3499-510.
[84] KAKIUCHI-KIYOTA S, ROSS T, WALLWEBER H A, et al. A BCMA/CD16A bispecific innate cell engager for the treatment of multiple myeloma [J]. Leukemia, 2022, 36(4): 1006-14.
[85] KERBAUY L N, MARIN N D, KAPLAN M, et al. Combining AFM13, a Bispecific CD30/CD16 Antibody, with Cytokine-Activated Blood and Cord Blood-Derived NK Cells Facilitates CAR-like Responses Against CD30(+) Malignancies [J]. Clin Cancer Res, 2021, 27(13): 3744-56.
[86] CHIU E, FELICES M, CICHOCKI F, et al. Anti-NKG2C/IL-15/anti-CD33 killer engager directs primary and iPSC-derived NKG2C(+) NK cells to target myeloid leukemia [J]. Mol Ther, 2021, 29(12): 3410-21.
[87] GAUTHIER L, VIRONE-ODDOS A, BENINGA J, et al. Control of acute myeloid leukemia by a trifunctional NKp46-CD16a-NK cell engager targeting CD123 [J]. Nat Biotechnol, 2023, 41(9): 1296-306.
[88] WU C H, LI J, LI L, et al. Extracellular vesicles derived from natural killer cells use multiple cytotoxic proteins and killing mechanisms to target cancer cells [J]. J Extracell Vesicles, 2019, 8(1): 1588538.
[89] LUGINI L, CECCHETTI S, HUBER V, et al. Immune surveillance properties of human NK cell-derived exosomes [J]. J Immunol, 2012, 189(6): 2833-42.
[90] ZHANG H, YANG L, WANG T, LI Z. NK cell-based tumor immunotherapy [J]. Bioact Mater, 2024, 31: 63-86.
[91] KANG Y T, NIU Z, HADLOCK T, et al. On-Chip Biogenesis of Circulating NK Cell-Derived Exosomes in Non-Small Cell Lung Cancer Exhibits Antitumoral Activity [J]. Adv Sci (Weinh), 2021, 8(6): 2003747.
[92] NEVIANI P, WISE P M, MURTADHA M, et al. Natural Killer-Derived Exosomal miR-186 Inhibits Neuroblastoma Growth and Immune Escape Mechanisms [J]. Cancer Res, 2019, 79(6): 1151-64.
[93] ZHANG M, SHAO W, YANG T, et al. Conscription of Immune Cells by Light-Activatable Silencing NK-Derived Exosome (LASNEO) for Synergetic Tumor Eradication [J]. Adv Sci (Weinh), 2022, 9(22): e2201135.
[94] TAO B, DU R, ZHANG X, et al. Engineering CAR-NK cell derived exosome disguised nano-bombs for enhanced HER2 positive breast cancer brain metastasis therapy [J]. J Control Release, 2023, 363: 692-706.