摘要
细胞间通讯是生命体内部稳态维持与功能执行的基石,其中多肽信号分子扮演了不可或缺的角色。本文旨在探讨多肽信号分子在细胞间通讯中的多方面作用及其背后的机制。多肽信号分子,由短链氨基酸组成,通过特定的合成、释放及降解过程,在生物体内实现精准的通讯功能。它们在调节生长发育、代谢、神经递质传递以及免疫响应等生理过程中发挥关键作用。通过与特定受体的结合,多肽信号分子激活了下游的信号传递通路,包括G蛋白偶联受体途径与激酶介导信号传递,从而影响细胞行为和功能。此外,异常的多肽信号传递被发现与多种疾病的发生发展相关,如神经退行性疾病、心血管疾病及肿瘤。本文还综述了研究多肽信号分子的主要技术与方法,揭示了当前的研究成就与面临的挑战,并展望了该领域未来的发展方向和可能的应用领域。
关键词: 多肽信号分子;细胞间通讯;作用机制
Abstract
Intercellular communication is the cornerstone of homeostasis maintenance and function execution in living organisms, in which peptide signalling molecules play an indispensable role. The aim of this paper is to explore the multifaceted roles of peptide signalling molecules in intercellular communication and the mechanisms behind them. Polypeptide signalling molecules, consisting of short-chain amino acids, perform precise communication functions in organisms through specific synthesis, release and degradation processes. They play key roles in regulating physiological processes such as growth and development, metabolism, neurotransmitter transmission, and immune response. Through binding to specific receptors, peptide signalling molecules activate downstream signalling pathways, including the G protein-coupled receptor pathway and kinase-mediated signalling, thereby affecting cell behaviour and function. In addition, aberrant peptide signalling has been found to be associated with the development of a variety of diseases, such as neurodegenerative diseases, cardiovascular diseases and tumours. This paper also reviews the main techniques and methods used to study peptide signalling molecules, reveals the current research achievements and challenges, and looks forward to the future direction of the field and possible application areas.
Key words: Peptide signalling molecules; intercellular communication; mechanism of action
参考文献 References
[1] Hölscher C. Protective properties of GLP‐1 and associated peptide hormones in neurodegenerative disorders[J]. British journal of pharmacology, 2022, 179(4): 695-714.
[2] Al-Kuraishy H M, Hussian N R, Al-Naimi M S, et al. The potential role of pancreatic γ-aminobutyric acid (GABA) in diabetes mellitus: a critical reappraisal[J]. International Journal of Preventive Medicine, 2021, 12.
[3] Nelde A, Rammensee H G, Walz J S. The peptide vaccine of the future[J]. Molecular & Cellular Proteomics, 2021, 20.
[4] Song D, Yang D, Powell C A, et al. Cell–cell communication: old mystery and new opportunity[J]. Cell biology and toxicology, 2019, 35: 89-93.
[5] Tse L H, Wong Y H. GPCRs in autocrine and paracrine regulations[J]. Frontiers in endocrinology, 2019, 10: 466576.
[6] Yang B A, Westerhof T M, Sabin K, et al. Engineered tools to study intercellular communication[J]. Advanced science, 2021, 8(3): 2002825.
[7] Camilleri M. Gastrointestinal hormones and regulation of gastric emptying[J]. Current Opinion in Endocrinology, Diabetes and Obesity, 2019, 26(1): 3-10.
[8] Sam C, Bordoni B. Physiology, acetylcholine[J]. 2020.
[9] Ye L, Schnepf D, Staeheli P. Interferon-λ orchestrates innate and adaptive mucosal immune responses[J]. Nature Reviews Immunology, 2019, 19(10): 614-625.
[10] Zhang G, Liao J, Liu Y, et al. Ion channel P2X7 receptor in the progression of cancer[J]. Frontiers in Oncology, 2023, 13.
[11] Seyedabadi M, Ghahremani M H, Albert P R. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential[J]. Pharmacology & therapeutics, 2019, 200: 148-178.
[12] Seyedabadi M, Ghahremani M H, Albert P R. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential[J]. Pharmacology & therapeutics, 2019, 200: 148-178.
[13] Wingler L M, Lefkowitz R J. Conformational basis of G protein-coupled receptor signaling versatility[J]. Trends in cell biology, 2020, 30(9): 736-747.
[14] Zhong S, Qu L J. Peptide/receptor-like kinase-mediated signaling involved in male–female interactions[J]. Current opinion in plant biology, 2019, 51: 7-14.
[15] Wang Y, Wu S, Zhu X, et al. LncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis[J]. Journal of Experimental Medicine, 2019, 217(3): e20190950.
[16] Butterfield D A, Boyd‐Kimball D. Redox proteomics and amyloid β‐peptide: insights into Alzheimer disease[J]. Journal of neurochemistry, 2019, 151(4): 459-487.
[17] Jansen H J, Mackasey M, Moghtadaei M, et al. NPR-C (Natriuretic Peptide Receptor-C) Modulates the Progression of Angiotensin II–Mediated Atrial Fibrillation and Atrial Remodeling in Mice[J]. Circulation: Arrhythmia and Electrophysiology, 2019, 12(1): e006863.