参考文献 References
[1] TAKAHASHI K, TANABE K, OHNUKI M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5): 861-872.
[2] EBRAHIMI M, FOROUZESH M, RAOUFI S, et al. Differentiation of human induced pluripotent stem cells into erythroid cells[J]. Stem Cell Res Ther, 2020, 11(1): 483.
[3] VELMURUGAN B K, BHARATHI PRIYA L, POORNIMA P, et al. Biomaterial aided differentiation and maturation of induced pluripotent stem cells[J]. J Cell Physiol, 2019, 234(6): 8443-8454.
[4] STEICHEN C, HANNOUN Z, LUCE E, et al. Genomic integrity of human induced pluripotent stem cells: Reprogramming, differentiation and applications[J]. World J Stem Cells, 2019, 11(10): 729-747.
[5] SHI Y, INOUE H, WU J C, et al. Induced pluripotent stem cell technology: a decade of progress[J]. Nat Rev Drug Discov, 2017, 16(2): 115-130.
[6] MATTAPALLY S, PAWLIK K M, FAST V G, et al. Human Leukocyte Antigen Class I and II Knockout Human Induced Pluripotent Stem Cell-Derived Cells: Universal Donor for Cell Therapy[J]. J Am Heart Assoc, 2018, 7(23): e010239.
[7] MILLMAN J R, PAGLIUCA F W. Autologous Pluripotent Stem Cell-Derived β-Like Cells for Diabetes Cellular Therapy[J]. Diabetes, 2017, 66(5): 1111-1120.
[8] ZHANG D, JIANG W, LIU M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells[J]. Cell Res, 2009, 19(4): 429-438.
[9] SALERO E, BLENKINSOP T A, CORNEO B, et al. Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives[J]. Cell Stem Cell, 2012, 10(1): 88-95.
[10] GOLESTANEH N, CHU Y, XIAO Y Y, et al. Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration[J]. Cell Death Dis, 2017, 8(1): e2537.
[11] BRANDL C. Generation of Functional Retinal Pigment Epithelium from Human Induced Pluripotent Stem Cells[J]. Methods Mol Biol, 2019, 1834: 87-94.
[12] JI S L, TANG S B. Differentiation of retinal ganglion cells from induced pluripotent stem cells: a review[J]. Int J Ophthalmol, 2019, 12(1): 152-160.
[13] ZHU J, REYNOLDS J, GARCIA T, et al. Generation of Transplantable Retinal Photoreceptors from a Current Good Manufacturing Practice-Manufactured Human Induced Pluripotent Stem Cell Line[J]. Stem Cells Transl Med, 2018, 7(2): 210-219.
[14] SIMARA P, TESAROVA L, REHAKOVA D, et al. Reprogramming of Adult Peripheral Blood Cells into Human Induced Pluripotent Stem Cells as a Safe and Accessible Source of Endothelial Cells[J]. Stem Cells Dev, 2018, 27(1): 10-22.
[15] KIAMEHR M, KLETTNER A, RICHERT E, et al. Compromised Barrier Function in Human Induced Pluripotent Stem-Cell-Derived Retinal Pigment Epithelial Cells from Type 2 Diabetic Patients[J]. Int J Mol Sci, 2019, 20(15).
[16] HALLAM D, HILGEN G, DORGAU B, et al. Human-Induced Pluripotent Stem Cells Generate Light Responsive Retinal Organoids with Variable and Nutrient-Dependent Efficiency[J]. Stem Cells, 2018, 36(10): 1535-1551.
[17] BARNEA-CRAMER A O, WANG W, LU S J, et al. Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice[J]. Sci Rep, 2016, 6: 29784.
[18] MANDAI M, FUJII M, HASHIGUCHI T, et al. iPSC-Derived Retina Transplants Improve Vision in rd1 End-Stage Retinal-Degeneration Mice[J]. Stem Cell Reports, 2017, 8(1): 69-83.
[19] KAMAO H, MANDAI M, OHASHI W, et al. Evaluation of the Surgical Device and Procedure for Extracellular Matrix-Scaffold-Supported Human iPSC-Derived Retinal Pigment Epithelium Cell Sheet Transplantation[J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 211-220.
[20] MANDAI M, WATANABE A, KURIMOTO Y, et al. Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration[J]. N Engl J Med, 2017, 376(11): 1038-1046.
[21] ZHU J, CIFUENTES H, REYNOLDS J, et al. Immunosuppression via Loss of IL2rγ Enhances Long-Term Functional Integration of hESC-Derived Photoreceptors in the Mouse Retina[J]. Cell Stem Cell, 2017, 20(3): 374-384.e375.
[22] SUGITA S, MANDAI M, HIRAMI Y, et al. HLA-Matched Allogeneic iPS Cells-Derived RPE Transplantation for Macular Degeneration[J]. J Clin Med, 2020, 9(7).
[23] LI X J, LI C Y, BAI D, et al. Insights into stem cell therapy for diabetic retinopathy: a bibliometric and visual analysis[J]. Neural Regen Res, 2021, 16(1): 172-178.
[24] PAOLILLO S, MARSICO F, PRASTARO M, et al. Diabetic Cardiomyopathy: Definition, Diagnosis, and Therapeutic Implications[J]. Heart Fail Clin, 2019, 15(3): 341-347.
[25] JAKOB M, HAMBRECHT M, SPIEGEL J L, et al. Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Show Comparable Functionality to Their Autologous Origin[J]. Cells, 2020, 10(1).
[26] GUO S, ZHANG Y, ZHANG Y, et al. Multiple Intravenous Injections of Valproic Acid-Induced Mesenchymal Stem Cell from Human-Induced Pluripotent Stem Cells Improved Cardiac Function in an Acute Myocardial Infarction Rat Model[J]. Biomed Res Int, 2020, 2020: 2863501.
[27] TANG L, WANG H, DAI B, et al. Human induced pluripotent stem cell-derived cardiomyocytes reveal abnormal TGFβ signaling in type 2 diabetes mellitus[J]. J Mol Cell Cardiol, 2020, 142: 53-64.
[28] RONALDSON-BOUCHARD K, MA S P, YEAGER K, et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells[J]. Nature, 2018, 556(7700): 239-243.
[29] TSUKAMOTO Y, AKAGI T, AKASHI M. Vascularized cardiac tissue construction with orientation by layer-by-layer method and 3D printer[J]. Sci Rep, 2020, 10(1): 5484.
[30] YEUNG E, FUKUNISHI T, BAI Y, et al. Cardiac regeneration using human-induced pluripotent stem cell-derived biomaterial-free 3D-bioprinted cardiac patch in vivo[J]. J Tissue Eng Regen Med, 2019, 13(11): 2031-2039.
[31] KUPFER M E, LIN W H, RAVIKUMAR V, et al. In Situ Expansion, Differentiation, and Electromechanical Coupling of Human Cardiac Muscle in a 3D Bioprinted, Chambered Organoid[J]. Circ Res, 2020, 127(2): 207-224.
[32] TANG S W, TONG W Y, PANG S W, et al. Deconstructing, Replicating, and Engineering Tissue Microenvironment for Stem Cell Differentiation[J]. Tissue Eng Part B Rev, 2020.
[33] SCHWEIZER P A, DARCHE F F, ULLRICH N D, et al. Subtype-specific differentiation of cardiac pacemaker cell clusters from human induced pluripotent stem cells[J]. Stem Cell Res Ther, 2017, 8(1): 229.
[34] PROTZE S I, LIU J, NUSSINOVITCH U, et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker[J]. Nat Biotechnol, 2017, 35(1): 56-68.
[35] CHAUVEAU S, ANYUKHOVSKY E P, BEN-ARI M, et al. Induced Pluripotent Stem Cell-Derived Cardiomyocytes Provide In Vivo Biological Pacemaker Function[J]. Circ Arrhythm Electrophysiol, 2017, 10(5): e004508.
[36] SCHULZE M L, LEMOINE M D, FISCHER A W, et al. Dissecting hiPSC-CM pacemaker function in a cardiac organoid model[J]. Biomaterials, 2019, 206: 133-145.
[37] DRAWNEL F M, BOCCARDO S, PRUMMER M, et al. Disease modeling and phenotypic drug screening for diabetic cardiomyopathy using human induced pluripotent stem cells[J]. Cell Rep, 2014, 9(3): 810-821.
[38] CHAMBERS S M, QI Y, MICA Y, et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors[J]. Nat Biotechnol, 2012, 30(7): 715-720.
[39] LIU Q, SPUSTA S C, MI R, et al. Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells[J]. Stem Cells Transl Med, 2012, 1(4): 266-278.
[40] KASHPUR O, SMITH A, GERAMI-NAINI B, et al. Differentiation of diabetic foot ulcer-derived induced pluripotent stem cells reveals distinct cellular and tissue phenotypes[J]. Faseb j, 2019, 33(1): 1262-1277.
[41] SHEN Y I, CHO H, PAPA A E, et al. Engineered human vascularized constructs accelerate diabetic wound healing[J]. Biomaterials, 2016, 102: 107-119.
[42] GORECKA J, GAO X, FEREYDOONI A, et al. Induced pluripotent stem cell-derived smooth muscle cells increase angiogenesis and accelerate diabetic wound healing[J]. Regen Med, 2020, 15(2): 1277-1293.
[43] XIA Y, NIVET E, SANCHO-MARTINEZ I, et al. Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells[J]. Nat Cell Biol, 2013, 15(12): 1507-1515.
[44] SONG B, SMINK A M, JONES C V, et al. The directed differentiation of human iPS cells into kidney podocytes[J]. PLoS One, 2012, 7(9): e46453.
[45] LAM A Q, FREEDMAN B S, MORIZANE R, et al. Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers[J]. J Am Soc Nephrol, 2014, 25(6): 1211-1225.
[46] SONG B, NICLIS J C, ALIKHAN M A, et al. Generation of induced pluripotent stem cells from human kidney mesangial cells[J]. J Am Soc Nephrol, 2011, 22(7): 1213-1220.
[47] TAJIRI S, YAMANAKA S, FUJIMOTO T, et al. Regenerative potential of induced pluripotent stem cells derived from patients undergoing haemodialysis in kidney regeneration[J]. Sci Rep, 2018, 8(1): 14919.
[48] LIU D, ZHENG W, PAN S, et al. Concise review: current trends on applications of stem cells in diabetic nephropathy[J]. Cell Death Dis, 2020, 11(11): 1000.
[49] TAKASATO M, ER P X, CHIU H S, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis[J]. Nature, 2016, 536(7615): 238.
[50] CIAMPI O, IACONE R, LONGARETTI L, et al. Generation of functional podocytes from human induced pluripotent stem cells[J]. Stem Cell Res, 2016, 17(1): 130-139.